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Abstract: In this study, CarbonTracker, an inverse modeling system

based on the ensemble Kalman filter, was used to evaluate the effects

of data assimilation parameters (assimilation window length and

ensemble size) on the estimation of surface CO
2
 fluxes in Asia.

Several experiments with different parameters were conducted, and

the results were verified using CO
2
 concentration observations. The

assimilation window lengths tested were 3, 5, 7, and 10 weeks, and

the ensemble sizes were 100, 150, and 300. Therefore, a total of 12

experiments using combinations of these parameters were conducted.

The experimental period was from January 2006 to December 2009.

Differences between the optimized surface CO
2
 fluxes of the

experiments were largest in the Eurasian Boreal (EB) area, followed

by Eurasian Temperate (ET) and Tropical Asia (TA), and were larger

in boreal summer than in boreal winter. The effect of ensemble size

on the optimized biosphere flux is larger than the effect of the

assimilation window length in Asia, but the importance of them

varies in specific regions in Asia. The optimized biosphere flux was

more sensitive to the assimilation window length in EB, whereas it

was sensitive to the ensemble size as well as the assimilation window

length in ET. The larger the ensemble size and the shorter the

assimilation window length, the larger the uncertainty (i.e., spread of

ensemble) of optimized surface CO
2
 fluxes. The 10-week assimi-

lation window and 300 ensemble size were the optimal configuration

for CarbonTracker in the Asian region based on several verifications

using CO
2
 concentration measurements. 
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1. Introduction

Recently, the global monthly averaged atmospheric CO
2

concentration surpassed 400 ppm for the first time (Betts et al.,

2016; WMO, 2016), which is a much larger magnitude com-

pared with the CO
2
 concentration in the early industrial

revolution (approximately 280 ppm). Based on the fifth report

of the Intergovernmental Panel on Climate Change (IPCC),

CO
2
 exerts the largest positive radiative forcing among all the

major factors of climate change. Thus, it is necessary to

understand the spatial-temporal distribution of atmospheric CO
2

concentrations. The distribution of atmospheric CO
2
 concen-

trations can be quantitatively estimated by evaluating the

surface CO
2
 fluxes. The “bottom-up” approach can be used to

estimate surface CO
2
 flux, which is based on the directly

measured flux observations or an ecosystem modeling (e.g.,

Krinner et al., 2005). In addition, the surface CO
2
 flux can be

estimated inversely using observed atmospheric CO
2
 concen-

trations as a constraint (Enting, 2002). This inverse method is

called the “top-down” approach and enables the effective

estimation of surface (i.e., land and ocean) flux values based

on limited observations (e.g., Gurney et al., 2002; Chevallier et

al., 2010).

To improve the accuracy of surface CO
2
 flux estimates and

reduce their uncertainties, data assimilation methods used in

Numerical Weather Prediction (NWP) have been applied.

Several studies have estimated surface CO
2
 fluxes using the

variational method (e.g., Chevallier et al., 2005; Baker et al.,

2006; Engelen et al., 2009; Basu et al., 2013) and the ensemble

Kalman filter (EnKF) (e.g., Peters et al., 2005, 2007, 2010;

Feng et al., 2009; Chatterjee et al., 2012). In the EnKF, the

parameters (e.g., assimilation window length and ensemble

size) used for data assimilation affect the results (Park and

Kim, 2010). In Chatterjee et al. (2013), the inversion results

obtained by four-dimensional variational (4DVAR) data assimi-

lation showed more reliable large-scale source-sink patterns

than those obtained by the EnKF; however, 4DVAR and EnKF

results were similar when the number of ensembles in the

EnKF increased. Babenhauserheide et al. (2015) demonstrated

similar qualities for 4DVAR and EnKF analyses in regions

with high observation densities, but for regions with sparse

observations (e.g., Asia), there are large differences, which

implies that there are large uncertainties in estimating the

surface CO
2
 fluxes in Asia. In addition, Babenhauserheide et

al. (2015) suggested that longer assimilation window lengths

add valuable information to the data assimilation system.

Therefore, it is important to set appropriate data assimilation

parameters (i.e., assimilation window length and ensemble

size) when applying the EnKF method for estimating surface

CO
2
 fluxes, especially for the Asian region, where obser-

vations are distributed relatively sparsely.

The Earth System Research Laboratory at the National

Oceanic and Atmospheric Administration (NOAA-ESRL) de-

veloped CarbonTracker, an inverse modeling system based on

the EnKF, to estimate surface CO
2
 fluxes. CarbonTracker has

Corresponding Author: Hyun Mee Kim, Department of Atmospheric
Sciences, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul
03722, Korea. 
E-mail: khm@yonsei.ac.kr 



2 ASIA-PACIFIC JOURNAL OF ATMOSPHERIC SCIENCES

been successfully applied for North America, Europe (Peters et

al., 2007, 2010), and Asia (Kim et al., 2012, 2014a, 2014b,

2017; Zhang et al., 2014a, 2014b; Kim et al., 2016). For

previous studies, a 5-week assimilation window and 150 en-

semble members were used for all regions. However, as noted

by Peters et al. (2007), surface CO
2
 flux patterns in Asia may

not be fully analyzed with a short assimilation window length

(i.e., 5 weeks) because observations are sparsely distributed in

Asia compared to North America and Europe. Therefore,

finding the optimal parameters for data assimilation in the

Asian region is necessary. In this study, several experiments

with different assimilation window lengths and ensemble sizes

were conducted, and the results were analyzed to find the

optimal assimilation window length and ensemble size for the

Asian region.

Section 2 presents a brief description of the CarbonTracker

and EnKF, observations, and the experimental framework. In

Section 3, the results are analyzed and an optimal set of

parameters for the Asian region is estimated by comparing the

results with several CO
2
 measurements. Finally, Section 4

presents the summary and conclusion.

2. Methodology

a. CarbonTracker

CarbonTracker is a system for estimating the surface CO
2

flux using flux modules, observed atmospheric CO
2
 concen-

trations, an atmospheric transport model (i.e., TM5), and the

EnKF data assimilation system (Peters et al., 2005, 2007). In

CarbonTracker, the surface CO
2
 flux is estimated by multi-

plying the optimized scaling factor (λr) to a prior flux instead

of estimating the surface CO
2
 flux directly. The prior surface

CO
2
 flux consists of biosphere flux (Fbio), ocean flux (Focean),

fire flux (Ffire), and fossil fuel flux (Fff), as in Eq. (1). The prior

and optimized fluxes (F) are calculated at 1o
× 1o resolution.

F(x, y, t) = λr·Fbio(x, y, t) + λr·Focean(x, y, t) + Ffire(x, y, t)

+ Fff(x, y, t) (1)

where x and y denote the zonal and meridional grid points,

respectively; t denotes time; λr represents the scaling factor

corresponding to the r-th optimization region.

The biosphere flux and the fire flux were obtained from the

Carnegie-Ames-Stanford Approach Global Fire Emissions Data-

base (CASA-GFED), version 3.1 (van der Werf et al., 2010).

Note that the fire flux represents only the direct CO
2
 emissions

caused by burning, whereas the subsequent effects of burning

are included in the biosphere flux, which implies that slight

variations in the fire flux can cause great uncertainty in the

biosphere flux. In CarbonTracker, the fire flux is fixed to a

prior flux value although the uncertainty of the fire flux cannot

be neglected in Tropical Asia (e.g., van der Werf et al., 2010),

whereas the biosphere flux is optimized by the assimilation

process. The ocean flux was obtained from Jacobson et al.

(2007), and the fossil fuel flux was obtained from the Carbon

Dioxide Information and Analysis Center (CDIAC, Boden et

al., 2010) and the Emission Database for Global Atmospheric

Research (EDGAR, European Commission, 2009) inventories.

The fossil fuel fluxes are spatially distributed in two steps:

first, the coarse scale flux distribution country totals from

CDIAC are mapped onto a 1o
× 1o grid; next, the totals within

the countries are distributed according to the spatial patterns

from the EDGAR inventories (Peters et al., 2007). In the case

of fossil fuel, the prior flux is used intact because the estima-

tions of inventory-based fossil fuel flux emissions are relatively

reliable although the reliability is small in China (Liu et al.,

2015). As a result, among the four flux modules, only the

scaling factors for the biosphere and ocean fluxes are optimized

through the EnKF data assimilation process. 

The scaling factors optimized through data assimilation are

the weekly basis linear parameters that correspond to the

optimization regions which divide the globe in 156 regions.

The optimization regions adopt different classifications for

land and ocean. A total of 126 ecoregions are used for land

with a combination of Transcom regions (Gurney et al., 2002)

and ecosystem types from Olson et al. (1985), and the ocean is

divided into 30 regions. The optimized flux is calculated by

multiplying the scaling factor representing each optimization

region to the prior surface flux.

Atmospheric CO
2
 concentrations are calculated from the

optimized surface CO
2
 fluxes using a transport model, TM5

(Krol et al., 2005). TM5 is an off-line model with a 2-way

nested grid and used as the observation operator in Carbon-

Tracker. In TM5, atmospheric CO
2
 concentrations are calculated

using meteorological forecast fields from the European Centre

for Medium Weather Forecast (ECMWF).

b. Ensemble Kalman filter 

In CarbonTracker, the scaling factor is optimized through the

ensemble square root filter (EnSRF) (Whitaker and Hamill,

2002), which is a type of EnKF (Evensen, 1994). Detailed

description about EnKF data assimilation process in Carbon-

Tracker can be found in previous studies (e.g., Peters et al.,

2005; Kim et al., 2012, 2014a, 2014b, 2017).

Because the observation density is sparse and the released/

absorbed surface CO
2
 cannot be immediately transported to the

atmosphere, it takes time to transmit the surface CO
2
 flux

signal at each grid point to the global observation sites. There-

fore, the state vector optimized at the analysis step includes

information from the previous and current states by adopting a

smoother window (lag of weeks) in data assimilation. The

assimilation window length in the current CarbonTracker is set

to 5 weeks following the setting for North America (Peters et

al., 2007). Robust surface CO
2
 flux can be obtained using the 5

weeks of lag in North America due to the dense observation

sites, whereas the 5 weeks of assimilation lag may not be

appropriate for Asia with its relatively sparse observation sites.

The ensemble size is set to 150 following the settings for
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North America. The Kalman gain matrix which is a weighting

factor for the model and observation information is calculated

according to the ensemble members in the EnKF, and would

theoretically be more accurate as the ensemble size increases.

The ensemble size is constrained by limited computer re-

sources. However, sampling error may occur due to the finite

ensemble size, which results in reduced accuracy of the

estimated fluxes as well as the estimated flux uncertainty and

makes the filter sensitive to observational data density. This

problem could be improved by applying the covariance locali-

zation method or inflating the background error covariance

(Houtekamer and Mitchell, 1998; Hamill et al., 2001). Because

the physical distance between the scaling factors cannot be

defined, Student’s t-test with a 95% significance level is

conducted to verify the significance of the calculated cor-

relations between the ensemble of the scaling factor and the

ensemble of the model CO
2
 concentration. The covariance

localization method is applied by setting the Kalman gain for

the corresponding scaling factor to zero if the calculated

correlations are not significant. The covariance localization is

not applied for the Marine Boundary Layer (MBL) because

observations in the MBL region are regarded to include flux

information from remote regions as well as local regions

(Peters et al., 2005). With this covariance localization method,

150 ensemble members were determined to be appropriate for

North America and Europe (Peters et al., 2007). However, the

optimum number of ensembles with covariance localization

has not been investigated for the Asian region. 

c. Observations

The measurement network of CO
2
 observations used in this

study is shown in Fig. 1. Observations are from NOAA

(Conway et al., 2011; Andrews et al., 2014), Commonwealth

Scientific and Industrial Research Organization (CSIRO,

Langenfelds et al., 2002), Environment Canada (EC, Worthy et

al., 2003), National Center for Atmospheric Research (NCAR,

Stephens et al., 2011), Lawrence Berkeley National Laboratory

(LBNL, Biraud et al., 2013), Instituto de Pesquisas Energeticas

e Nucleares (IPEN, Gatti et al., 2010) (observation data is

available at http://www.esrl.noaa.gov/gmd/ccgg/obspack/data.

php; Masarie et al., 2014), Japan Meteorological Agency

(JMA, Tsutsumi et al., 2006), World Data Centre for Green-

house Gases (WDCGG, http://ds.data.jma.go.jp/wdcgg/), and

Global Environmental Database of Center for Global Environ-

ment Research (CGER) National Institute for Environmental

Studies (NIES).

In addition to observations that are used in the previous

CarbonTracker study of Kim et al., (2014b), observations in

the Asian region are added for a more detailed analysis of

surface CO
2
 flux in Asia and verification of the results: surface

CO
2
 observations of Cape Rama (CRI, Bhattacharya et al.,

2009), Gosan (GSN, Ju et al., 2007), LLN (Lulin, Sheu et al.,

2009), and SDZ (Shangdianzi, Liu et al., 2009) distributed by

WDCGG; Japan-Russia Siberian Tall Tower Inland Obser-

vation Network (JR-STATION) tower and aircraft measure-

ments (Sasakawa et al., 2010, 2013), Cape Ochi-ichi (COI,

Mukai et al., 2014a), and Hateruma island (HAT, Mukai et al.,

2001, 2014b) distributed by CGER NIES. The observation

sites for this study, including the newly added observation sites

in the Asia region, are presented in Table 1.

Observations are averaged over 12-16 LST, 00-04 LST, or

14-18 LST according to the position and characteristics of

each site. For example, sampling at night is valuable for obser-

vation sites located at high altitude because these sites are

often affected by local valleys that are difficult to be accounted

for in the model.

For validation, the optimized CO
2
 concentrations are com-

pared with observed CO
2
 concentrations at Berezorechka

(BRZ, aircraft only), Ulaanbaatar (ULB), COI, and HAT sites

that are not used in data assimilation. Note that both the

surface and aircraft observation data at BRZ are used in this

study: the surface observation data at BRZ (hereafter BRZ_surf)

is used in data assimilation and the aircraft observation data at

BRZ (hereafter BRZ_air) is used for validation. The surface

observations at COI and HAT and the BRZ_air are averaged

over 12-16 LST for a more accurate comparison because the

transport model is expected to characterize the well-mixed

boundary layer better during the day than during the night

(Peters et al., 2010). However, aircraft observations at ULB

were used without filtering because they were mostly obtained

in the morning. The aircraft observations at BRZ_air and ULB

were sampled at from the planetary boundary layer to the

lower free troposphere (up to few km). In addition, CO
2

measurements from Comprehensive Observation Network for

Trace gases by Airliner (CONTRAIL) project were used to

validate the modeled results. The CONTRAIL project was

started in late 2005 to measure greenhouse gases using com-

mercial airlines (Machida et al., 2008). The observation data

from the CONTRAIL project have been used for verifying

inverse modeling results (e.g., Feng et al., 2011; Houweling et

al., 2015, Kim et al., 2016; Thompson et al., 2016).

Fig. 1. Observation network of CO
2
 concentrations over the globe.

Each observation site is denoted by two colors: Blues are sites
whose data are used in assimilation, whereas reds are sites whose
data are not used in assimilation but used in verification. The EB,
ET, and TA are denoted by green, yellow, and brown colors,
respectively.
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d. Experimental framework 

By performing an Observing System Simulation Experiment

(OSSE), Peters et al. (2005) showed that a 9-week assimilation

window and 200 ensembles are appropriate for estimating the

surface CO
2
 flux using System for Ensemble Assimilation of

Tracers in the Atmosphere (SEAT-A), which is the previous

version of CarbonTracker. Peters et al. (2007) used a 5-week

assimilation window and 150 ensembles in North America and

Europe, where observations are distributed densely, and con-

ducted a sensitivity test for 3-week and 10-week assimilation

windows and 300 ensembles to assess a range of estimated

surface CO
2
 fluxes. Preceding studies for Asia have used a 5-

week assimilation window and 150 ensembles (Peters et al.,

2010; Kim et al., 2012, 2014a, 2014b; Zhang et al., 2014a,

2014b), the same settings used by Peters et al. (2007). Because

the spatial distribution of observation sites in Asia is not as

dense as in North America and Europe, a longer assimilation

window length may be required for the Asia region, as

observed in Peters et al. (2007). Babenhauserheide et al.

(2015) showed that the carbon sink in Asia was increased by

extending the assimilation window length from 5 to 10 weeks,

whereas no further increase occurred from 10 to 15 weeks.

Chatterjee et al. (2013) showed that inversion results become

better by enlarging the ensemble size. 

Experiments were set by considering computational costs as

well as results from previous studies. Assimilation window

lengths of 3, 5, 7, and 10 weeks and ensemble sizes of 100,

150, and 300 were tested. By combining the settings of

assimilation window length and ensemble size, a total of 12

experiments were conducted (Table 2).

The TM5 transport model uses a 2-way nested grid. Kim et

al. (2014a) showed that more detailed flux patterns for Asia

can be obtained with a nested domain centered in East Asia.

Accordingly, the nested domain centered in East Asia was

applied with a 3o
× 2o horizontal resolution in the globe and 1o

× 1o (latitude 12oS-54oN, longitude 66oE-153oE) horizontal re-

solution in East Asia.

Table 1. Observation sites located in Asia. MDM denotes Model-Data Mismatch. Note that observations in BRZ_air, ULB (aircraft), COI, and
HAT are not used in assimilation but used for verification.

Region Site Code Latitude Longitude Height [m] Laboratory MDM [ppm] Type

Eurasian
Boreal

BRZ_surf 56.15oN 84.33oE 168 NIES 3 Continuous

KRS 58.25
o
N 82.42

o
E 76 NIES 3 Continuous

IGR 63.19oN 64.41oE 9 NIES 3 Continuous

NOY 63.43oN 75.78oE 108 NIES 3 Continuous

DEM 59.79
o
N 70.87

o
E 63 NIES 3 Continuous

SVV 51.33oN 82.13oE 495 NIES 3 Continuous

AZV 54.71oN 73.03oE 110 NIES 3 Continuous

VGN 54.50
o
N 62.32

o
E 192 NIES 3 Continuous

YAK 62.09oN 129.36oE 264 NIES 3 Continuous

BRZ_air 56.15oN 84.33oE vary NIES - Aircraft

ULB 47.40
o
N 106.20

o
E vary ESRL - Aircraft

Eurasian
Temperate

WLG 36.29o
N 100.90

o
E 3810 CMA/ESRL 1.5 Discrete

WIS 31.13oN 34.88oE 400 ESRL 2.5 Discrete

KZD 44.45oN 77.57oE 412 ESRL 2.5 Discrete

KZM 43.25
o
N 77.88

o
E 2519 ESRL 2.5 Discrete

TAP 36.73oN 126.13oE 20 ESRL 5 Discrete

SDZ 40.39
o
N 117.07

o
E 287 CMA/ESRL 3 Discrete

LLN 23.47o
N 120.87

o
E 2862 ESRL 7.5 Discrete

UUM 44.45oN 111.11oE 914 ESRL 2.5 Discrete

CRI 15.08
o
N 73.83

o
E 60 CSIRO 3 Discrete

MNM 24.29o
N 153.98

o
E 8 JMA 3 Continuous

RYO 39.03oN 141.82oE 260 JMA 3 Continuous

YON 24.47
o
N 123.02

o
E 30 JMA 3 Continuous

GSN 33.15o
N 126.12

o
E 72 NIER 3 Continuous

COI 43.16oN 145.50oE 94 NIES - Continuous

HAT 24.06
o
N 123.81

o
E 47 NIES - Continuous

Tropical Asia BKT 0.20
o
S 100.31

o
E 864 ESRL 7.5 Discrete
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The optimized surface CO
2
 flux in the Asia region was

analyzed with a classification of EB, ET, and TA in the

Transcom region (Gurney et al., 2002). A total of 22 regions in

Transcom are composed of 11 land and 11 ocean regions. Fire

and fossil fuel fluxes were excluded from the analysis because

they use prior fluxes intact. The experimental period was from

1 January, 2006, to 31 December, 2009, and the first year was

regarded as a spin-up period and excluded from the analysis

period.

3. Results

a. Surface CO
2
 flux

Figure 2 represents the distribution of the prior and posterior

(i.e., optimized) biosphere fluxes of L5E150 (i.e., current

configuration of CarbonTracker) in Asia averaged over 2007-

2009. Before optimization, the magnitudes of absorption and

emission of surface CO
2
 flux in Asia are quite small (Fig. 2a).

After optimization, the regional difference in surface CO
2
 flux

becomes distinct in the Asia region (Fig. 2b). In Asia, most

regions show carbon absorptions except the Indian subcon-

tinent, parts of Indonesia, and northern Taiga of the EB region.

Net carbon exchange between land/ocean and atmosphere in

Asia estimated using L5E150 configuration was −1.09 ± 0.69

PgC yr−1 (the range was −1.19 - −0.97 PgC yr−1 among all ex-

periments in this study). Negative sign means carbon absorp-

tion by the surface, whereas positive sign implies carbon

emission to the atmosphere from the surface. The estimated

carbon absorption in Asia in this study was smaller than other

inversion studies using CarbonTracker such as CarbonTracker

2015 (CT2015; −1.92 ± 4.32 PgC yr−1 for 2007-2009), Carbon-

Tracker-Europe 2015 (CTE2015; −1.65 ± 0.82 PgC yr−1 for

2007-2009), and CTDAS (CarbonTracker Data Assimilation

System) with CONTRAIL data (Zhang et al. 2014b, −1.56 ±

1.34 PgC yr−1 for 2006-2010), which may be caused by add-

itionally assimilated Siberian observations (Kim et al., 2017).

As in other studies, the intensity of absorption was largest in

the EB region, where carbon uptake primarily occurred,

followed by the ET region except for the desert and Indian

region. The intensity of flux in the TA region is weaker

compared with that in the EB and ET regions. Although the

regional division and the experimental period were slightly

different, the estimated carbon absorption in this study was

comparable to that (−1.05 ± 0.43 PgC yr−1 for 2001-2004) in

Peylin et al. (2013), for the North Asian region (roughly

corresponding to EB and ET in this study).

Differences between the optimized biosphere fluxes of

L5E150 and other experiments are presented in Fig. 3. For the

150 ensemble experiments (Figs. 3b, e, h, and k), carbon sinks

increase when the assimilation window length becomes longer.

For the 100 and 300 ensemble experiments, changes in fluxes

are more distinct in the EB regions compared to the ET regions

(e.g., compare Figs. 3c and f). For all assimilation window

length experiments, the overall and regional fluxes change

distinctly as the ensemble size becomes larger. The carbon

sinks decreased in the EB and China in the ET but increased in

the Indian subcontinent in the ET (compare Figs. 3d and f).

Thus, both ensemble size and assimilation window length

Table 2. Experimental name of sensitivity tests for the number of
ensemble and assimilation window length.

Experimental 
Settings

Ensemble size

100 150 300

Assimilation 
window
length

3 L3E100 L3E150 L3E300

5 L5E100 L5E150 L5E300

7 L7E100 L7E150 L7E300

10 L10E100 L10E150 L10E300

Fig. 2. (a) Prior and (b) posterior (i.e., optimized) biosphere fluxes (g C m
−2

 yr
−1

) of L5E150 in Asia averaged over 2007-2009.
Blue color denotes net carbon uptake by the surface whereas red color denotes carbon release to the atmosphere.
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affect the flux distribution of the carbon absorption and emis-

sion in Asia, but the flux distribution shows more distinct

features according to the ensemble size, which implies that the

overall effect of ensemble size on the surface CO
2
 flux

distribution is larger compared to that of the assimilation

window length.

To assess the sensitivity of regional distribution due to

experimental configuration, the standard deviation of the opti-

mized surface CO
2
 fluxes of the experiments in summer (JJA)

and winter (DJF) for the Asian region is shown in Fig. 4.

Differences between the optimized surface CO
2
 fluxes of the

experiments are greater in summer than winter. The greatest

differences exist in EB, followed by ET and TA, which implies

that the absorption and emission of surface CO
2
 fluxes in EB

are sensitive to experimental settings in summer because the

absorption and emission in EB are more active in summer

compared to those in other regions or seasons in addition to the

seasonal change of the atmospheric transport. 

Annual biosphere and ocean fluxes for each Transcom

region and the globe are presented in Table 3. For global

fluxes, the carbon sink of the prior flux in land is smaller than

that of the posterior flux, whereas the carbon sink of the prior

Fig. 3. The difference of the optimized biosphere fluxes (g C m
−2

 yr
−1

) of (a) L3E100, (b) L3E150, (c) L3E300, (d) L5E100, (e)
L5E150, (f) L5E300, (g) L7E100, (h) L7E150, (i) L7E300, (j) L10E100, (k) L10E150, and (l) L10E300 from the optimized biosphere
fluxes of L5E150, averaged over 2007-2009 in Asia. Note that (e) is an empty field because the differences are calculated based on
L5E150. 
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flux in ocean is greater than that of the posterior flux. Total

carbon uptakes increase after optimization. The EB, ET, and

TA in Asia are sink regions of surface CO
2
 fluxes (Pan et al.,

2011). Differences between prior and posterior surface CO
2

flux and between experiments are greater for the EB and ET

than for other regions. The magnitude of flux differences and

flux itself are small in the TA. 

The uptakes of average optimized surface CO
2
 fluxes for the

globe over 2007-2009 increase as the assimilation window

length becomes longer and the ensemble size becomes larger

(Fig. 5a). The uptakes of average optimized surface CO
2
 fluxes

in Asia increase as the assimilation window length increases,

except L10E100, but decrease as the ensemble size increases

(Fig. 5b), which is different from the global fluxes and more

distinctly shown in ET than EB. The increase of the uptake of

average optimized surface CO
2
 fluxes for longer assimilation

Table 3. Annual optimized biosphere and ocean fluxes (Pg C yr−1) averaged over 2007-2009 for each Transcom region in Asia and the globe for
each experiment.

Region Name Prior L3E100 L5E100 L7E100 L10E100

Eurasia Boreal −0.08 −0.63 −0.66 −0.68 −0.64

Eurasia Temperate −0.07 −0.39 −0.44 −0.46 −0.46

Tropical Asia 0.02 −0.03 −0.03 −0.02 −0.03

Global −4.15 −5.29 −5.60 −5.74 −5.80

Land −1.34 −3.64 −3.81 −3.88 −3.92

Ocean −2.81 −1.65 −1.79 −1.86 −1.88

Region Name Prior L3E150 L5E150 L7E150 L10E150

Eurasia Boreal −0.08 −0.59 −0.65 −0.66 −0.68

Eurasia Temperate −0.07 −0.40 −0.44 −0.46 −0.47

Tropical Asia 0.02 0.00 −0.01 −0.02 −0.03

Global −4.15 −5.38 −5.64 −5.78 −5.85

Land −1.34 −3.60 −3.76 −3.86 −3.93

Ocean −2.81 −1.78 −1.88 −1.92 −1.92

Region Name Prior L3E300 L5E300 L7E300 L10E300

Eurasia Boreal −0.08 −0.60 −0.65 −0.66 −0.66

Eurasia Temperate −0.07 −0.35 −0.39 −0.41 −0.43

Tropical Asia 0.02 −0.02 −0.02 −0.03 −0.04

Global −4.15 −5.46 −5.70 −5.81 −5.88

Land −1.34 −3.68 −3.83 −3.92 −3.95

Ocean −2.81 −1.77 −1.87 −1.89 −1.92

Fig. 4. The standard deviation of the optimized surface biosphere fluxes (g C m−2 yr−1) between 12 experiments of (a) JJA and (b) DJF
averaged over 2007-2009.
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window length is consistent with the results in Babenhause-

heide et al. (2015).

Figure 6 presents the optimized biosphere fluxes that are

weekly cumulated for EB, ET, and TA averaged over 2007-

2009. The differences between experiments become greater

after the summer, which implies that the absorption of vege-

tation in summer has a large impact on the results of each

experiment. The intensity of absorption and emission of surface

CO
2
 flux is strong in EB compared to other regions. The

intensity of absorption in EB increases as the assimilation

window length becomes longer, which implies that the intensity

of absorption is more sensitive to the assimilation window

length than the ensemble size (Figs. 6a and d). The effect of

the assimilation window length is important for EB because

the distribution of vegetation and weather phenomena in EB

are relatively simple and there are sparse observation sites. In

contrast, the intensity of absorption and emission of surface

CO
2
 fluxes in ET is sensitive to both the ensemble size and the

assimilation window length (Figs. 6b and e) due to the com-

plex distribution of vegetation and various weather phenomena

in ET. Differences between experiments in TA are less than

those in EB and ET (Figs. 6c and f) because data assimilation

is not highly effective in TA due to the small intensity of

surface CO
2
 flux and few observations in TA compared to EB

and ET. Therefore, additional observations are required to

optimize the surface CO
2
 flux in TA rather than the optimi-

zation of assimilation parameters.

Overall, the averaged absorption intensity and difference in

averaged intensity of optimized biosphere fluxes among ex-

periments are largest in EB, followed by ET and TA. In Asia,

as the assimilation window length increases, the uptake of

optimized biosphere fluxes increases. In contrast, as the en-

semble size increases, the uptake decreases. Although the

effect of ensemble size on the distribution of surface CO
2
 flux

in Asia is generally larger than the effect of the assimilation

window length in Asia, the importance of the assimilation

window length and ensemble size on the distribution of surface

CO
2
 flux varies in specific regions in Asia. 

Fig. 5. Annual optimized biosphere and ocean fluxes (Pg C yr
−1

)
averaged over 2007-2009 for (a) the globe and (b) each Transcom
region in Asia (i.e., EB, ET, and TA) for each experiment. In (a),
light gray represents the prior flux and dark gray represents the
posterior flux over globe.

Fig. 6. Weekly cumulative flux in: (a) EB, (b) ET, (c) TA region averaged over 2007-2009. (d), (e), and (f) are the magnifications of (a),
(b), and (c) in the latter part of year, respectively. Note that EB, ET, and TA region use different scales in y-axis.
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b. Uncertainty (ensemble spread) associated with surface CO
2

flux 

Figure 7 presents the uncertainty of optimized surface CO
2

fluxes for each experiment in the globe, EB, ET, and TA. The

uncertainty is obtained by a standard deviation of optimized

surface CO
2
 fluxes. The overall uncertainty was reduced

through the optimization process by 24-36% in the globe and

46-54%, 20-33%, 1-17% over EB, ET, and TA, respectively,

for all experiments. EB shows the largest uncertainty reduction

after optimization. TA shows the smallest differences between

prior and posterior uncertainties, which reaffirms the slight

data assimilation effect for TA. The uncertainty of global flux

is reduced as the assimilation window length becomes longer,

and the increase in the reduction rate due to the assimilation

window length is distinct for smaller ensemble experiments. In

contrast, the uncertainty of global flux increases as the en-

semble size becomes larger. The uncertainties of regional (i.e.,

EB, ET, TA) fluxes show a similar decreasing (increasing)

trend as the assimilation window length (ensemble size)

increases. Detailed values are shown in Table 4.

To illustrate the regional distribution of reduced uncertainties

after optimization, the uncertainty reduction (UR) of L5E150

for the Asian region is shown in Fig. 8. UR is calculated as in

Eq. (2) similar to previous studies (Peters et al., 2005; Meirink

et al., 2008; Chevallier et al., 2009; Feng et al., 2009):

(2)

where prior uncertainty denotes the uncertainty of prior fluxes

and posterior uncertainty denotes the uncertainty of optimized

fluxes, calculated using the standard deviation of ensembles

for each scaling factor in each grid point. The UR is largest in

EB, followed by ET (Fig. 8), consistent with Fig. 7. 

The differences in UR between other experiments and

L5E150 are presented in Fig. 9. Compared to the UR of

L5E150, the URs of other experiments become large as the

ensemble size becomes smaller and the assimilation window

length becomes longer. As the assimilation window becomes

longer, more observations are assimilated and the posterior

UR 1
posterior uncertainty

prior uncertainty
------------------------------------------------------–⎝ ⎠

⎛ ⎞ 100×=

Fig. 7. Histogram of prior and posterior uncertainty (Pg C yr
−1

) in
the globe (black), EB (white), ET (grey), and TA (slash) region for
each experiment averaged over 2007-2009. 

Table 4. Prior and posterior uncertainty (Pg C yr
−1

) in EB, ET, TA and globe averaged over 2007-2009.

Region Name Prior L3E100 L5E100 L7E100 L10E100

Eurasia Boreal 1.10 0.58 0.56 0.53 0.50

Eurasia Temperate 0.48 0.37 0.36 0.34 0.32

Tropical Asia 0.18 0.17 0.16 0.16 0.15

Global 2.25 1.66 1.59 1.53 1.45

Land 1.88 1.32 1.27 1.22 1.15

Ocean 1.24 1.00 0.96 0.93 0.88

Region Name Prior L3E150 L5E150 L7E150 L10E150

Eurasia Boreal 1.10 0.58 0.56 0.55 0.53

Eurasia Temperate 0.48 0.38 0.37 0.36 0.34

Tropical Asia 0.18 0.17 0.17 0.16 0.16

Global 2.25 1.68 1.63 1.59 1.53

Land 1.88 1.34 1.30 1.27 1.22

Ocean 1.24 1.02 0.99 0.97 0.93

Region Name Prior L3E300 L5E300 L7E300 L10E300

Eurasia Boreal 1.10 0.59 0.58 0.57 0.56

Eurasia Temperate 0.48 0.39 0.38 0.37 0.37

Tropical Asia 0.18 0.18 0.17 0.17 0.17

Global 2.25 1.71 1.68 1.66 1.63

Land 1.88 1.37 1.34 1.32 1.30

Ocean 1.24 1.03 1.02 1.00 0.98
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uncertainty becomes smaller, which implies large uncertainty

reduction. In contrast, smaller ensembles have less ensemble

spread, leading to artificial reduction of a posterior uncertainty,

which results in large uncertainty reduction. Thus, the large

uncertainty reduction by the smaller ensembles may include

the sampling error. In comparison with the existing L5E150

configuration, the UR of L10E100 is the largest (Fig. 9j) and

the UR of L10E300 is similar to that of L5E150 with more

regional variations (Fig. 9l). Symmetrical patterns between

L7E100 and L10E150 imply that reduced uncertainties accom-

panying a longer assimilation window (Fig. 9g) can be com-

pensated for by larger uncertainties with a larger ensemble size

(Fig. 9k). 

Overall, as the assimilation window length increases, the

uncertainty of optimized biosphere fluxes decreases and UR

increases. In contrast, as the ensemble size increases, the

uncertainty increases and UR decreases. 

c. Verification

(1) Growth rate

To verify the validity of the inversion results, the growth rate

(GR) of the atmospheric CO
2
 concentration estimated from the

model has been compared to that from the observations (e.g.,

Rayner et al., 2005; Bruhwiler et al., 2011). To assess the

balance of the carbon absorption and emission in the globe, the

GR of the global atmospheric CO
2
 concentrations estimated

from each experiment is compared to that of the observed CO
2

concentration provided by NOAA (www.esrl.noaa.gov/gmd/

ccgg/trends/global.html). The GR provided by NOAA is the

annual mean global GR (i.e., the total sum of CO
2
 that emitted

to and removed from the atmosphere globally during a year)

inferred directly from the observed CO
2
 concentrations at

marine surface sites. In contrast, the GR of the global

atmospheric CO
2
 concentration estimated in each experiment

is calculated from total annual global flux estimated from each

experiment as:

GR = (Total flux) × (Conversion factor) (3)

where total flux is the sum of the global biosphere, ocean, fire,

and fossil fuel fluxes, and the conversion factor is 0.47 ppm

(Pg C)−1 (e.g., Fujii, 1990; Battle et al., 2000). The conversion

Fig. 8. Uncertainty reduction (%) of L5E150 averaged over 2007-
2009 with the measurement sites (blue).

Table 5. RMSE, bias, and standard deviation of the bias (ppm), averaged over 2007-2009.

NAME
L3E100 L5E100 L7E100 L10E100

RMSE BIAS STD RMSE BIAS STD RMSE BIAS STD RMSE BIAS STD

ULB 1.75 0.18 1.75 1.67 0.2 1.66 1.6 0.18 1.59 1.58 0.17 1.57

BRZ_air 2.94 −0.38 2.92 2.96 −0.38 2.93 2.92 −0.39 2.9 2.87 −0.37 2.84

COI 4.17 1.46 3.9 4.19 1.41 3.94 4.17 1.39 3.93 4.16 1.4 3.92

HAT 2.4 0.29 2.38 2.37 0.34 2.34 2.35 0.33 2.32 2.35 0.32 2.33

NAME
L3E150 L5E150 L7E150 L10E150

RMSE BIAS STD RMSE BIAS STD RMSE BIAS STD RMSE BIAS STD

ULB 1.84 0.37 1.81 1.8 0.34 1.77 1.81 0.3 1.79 1.79 0.23 1.78

BRZ_air 2.83 −0.23 2.82 2.79 −0.36 2.76 2.8 −0.4 2.77 2.84 −0.39 2.81

COI 4.05 1.49 3.77 4.09 1.36 3.86 4.17 1.32 3.96 4.2 1.27 4.01

HAT 2.43 0.48 2.38 2.4 0.44 2.36 2.39 0.41 2.36 2.37 0.36 2.35

NAME
L3E300 L5E300 L7E300 L10E300

RMSE BIAS STD RMSE BIAS STD RMSE BIAS STD RMSE BIAS STD

ULB 1.74 0.25 1.72 1.68 0.23 1.67 1.67 0.17 1.66 1.62 0.14 1.62

BRZ_air 2.78 −0.38 2.75 2.76 −0.38 2.73 2.75 −0.4 2.72 2.78 −0.44 2.74

COI 4.05 1.47 3.77 4.03 1.38 3.78 3.98 1.31 3.76 3.99 1.29 3.78

HAT 2.4 0.35 2.37 2.38 0.36 2.35 2.37 0.33 2.35 2.36 0.3 2.34
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factor is used to convert the optimized CO
2
 flux (Pg C) to CO

2

concentration (ppm) in each experiment. 

Table 6 shows the GR of the atmospheric CO
2
 concen-

trations (ppm) during 2007-2009. The GR estimated from the

prior CO
2
 flux is generally greater than that estimated from the

optimized CO
2
 flux. As the assimilation window length

becomes longer and the ensemble size becomes larger, the GR

estimated from the optimized CO
2
 flux becomes closer to that

of the observed CO
2
 concentration. This tendency is consistent

with the previous result in Fig. 5, which shows increasing

carbon absorption with longer assimilation window length and

larger ensemble size. Estimation of more CO
2
 absorption in

biosphere and land for longer assimilation window length and

larger ensemble size offsets the fossil fuel emission, which

leads the reduced GR closer to observations. As a result, the

L10E300 experiment shows the GR closest to that of obser-

vations.

(2) Verification using assimilated observations

To verify the modeled CO
2
 concentrations, the modeled CO

2

were compared with the observations that used for data

assimilation (22 sites located in Asia, Table 1). Figure 10 shows

the bias and RMSE/MDM between modeled and observed

CO
2
 concentrations. Except for L10E100, bias decrease as the

Fig. 9. The difference of uncertainty reduction (%) of (a) L3E100, (b) L3E150, (c) L3E300, (d) L5E100, (e) L5E150, (f) L5E300, (g)
L7E100, (h) L7E150, (i) L7E300, (j) L10E100, (k) L10E150, (l) L10E300 from L5E150, respectively, averaged over 2007-2009. Note
that (e) is an empty field because the differences are calculated based on L5E150. 
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assimilation window length becomes longer for the experi-

ments with the same ensemble size (Fig. 10a). More obser-

vations can be assimilated for longer assimilation window

length, which leads smaller bias. The RMSE/MDM decreases

as the ensemble size increases, whereas it does not vary

depending on the assimilation window length for the experi-

ments with the same ensemble size (Fig. 10b). The RMSE/

MDM of L10E300 is the smallest, showing a decreased

RMSE/MDM with a larger ensemble size for the experiments

with the same assimilation window length (Fig. 10b). For the

small ensemble size (i.e., 100), bias and RMSE increase

slightly with the longest assimilation window length (i.e., 10

weeks), which may be caused by the filter divergence of EnKF.

(3) Verification using independent observations from 4 obser-

vation sites

The simulated CO
2
 concentrations of each experiment were

compared with independently observed CO
2
 concentrations

that were not used in data assimilation. Observations used in

verification were from 4 observation sites: COI, HAT, BRZ_air,

and ULB. Observations in COI and HAT are surface measure-

ments, and observations in BRZ_air and ULB are aircraft

measurements (Table 1). 

The bias and RMSE between the simulated CO
2
 concen-

trations and the observed CO
2
 concentrations at 4 observation

sites are presented in Fig. 11. The bias varies depending on the

observation sites, showing a negative bias in BRZ_air and

positive bias in other sites (Fig. 11a). Note that the magnitudes

of the bias and RMSE at COI are much larger compared to

those at other sites. The COI is a coastal site under the

influence of both land and ocean fluxes (Ballav et al., 2012),

which is difficult to predict offshore and onshore flow

accurately in the transport model (Law et al., 2008; Patra et al.,

2008). Four experiments with 100 ensembles showed small

differences in bias depending on the assimilation window

Table 6. Growth rate (GR) of atmospheric CO
2
 concentrations [ppm]

for each experiment during 2007-2009. The observed GR is obtained
from NOAA which is inferred directly from the observed CO

2
 at

marine surface sites.

GR prior L3E100 L5E100 L7E100  L10E100 obs.

2007 2.99 3.00 2.85 2.76 2.66 2.09

2008 2.88 2.08 1.94 1.90 1.91 1.78

2009 2.58 1.76 1.61 1.55 1.55 1.62

avg 2.82 2.28 2.14 2.07 2.04 1.83

GR prior L3E150 L5E150 L7E150  L10E150 obs.

2007 2.99 3.05 2.81 2.71 2.59 2.09

2008 2.88 1.94 1.89 1.84 1.89 1.78

2009 2.58 1.74 1.65 1.62 1.57 1.62

avg 2.82 2.24 2.11 2.05 2.02 1.83

GR prior L3E300 L5E300 L7E300  L10E300 obs.

2007 2.99 2.97 2.79 2.65 2.56 2.09

2008 2.88 1.95 1.83 1.83 1.81 1.78

2009 2.58 1.69 1.64 1.64 1.64 1.62

avg 2.82 2.20 2.09 2.04 2.01 1.83

Fig. 10. (a) Bias [ppm] and (b) RMSE/MDM between modeled
CO

2
 concentrations and observed CO

2
 concentrations of each

experiment in 22 observation sites in Asia, whose data are used in
assimilation.

Fig. 11. (a) Bias [ppm] and (b) RMSE [ppm] between modeled CO
2

concentrations and observed CO
2
 concentrations of each experiment

in 4 independent observation sites (ULB, BRZ_air, COI, and HAT). 
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length, which implies that the assimilation window length does

not affect the bias much for small ensembles. Except BRZ_air,

for 150 and 300 ensembles, biases decrease as the assimilation

window length becomes longer, showing the smaller biases for

experiments with 10-week assimilation window (i.e., L10E150

and L10E300). In case of RMSE, although the results vary

slightly among observation sites, on average, the RMSE of

L10E300 is the smallest, showing a decreased RMSE with a

larger ensemble size (Fig. 11b). For 300 ensemble experi-

ments, the RMSE decreases with a longer assimilation

window. Detailed values are shown in Table 5. 

(4) Verification using independent observations from the

CONTRAIL project

In addition to the independent CO
2
 observations from 4

observation sites in Section 3.3.3, CO
2
 measurements from the

CONTRAIL project were used to validate the modeled results.

Following Niwa et al. (2012), the observations above 625 hPa

during 2007-2009 were used in analysis to exclude the effect

of big cities near the airports at lower altitudes. Note that

approximately half of vertical profile data are obtained over

Tokyo because the CONTRAIL project is based on the mea-

surements of Japan Airlines flights.

Figure 12 represents the average bias and RMSE between

modeled CO
2
 concentrations and observed CO

2
 concentrations

obtained from the CONTRAIL project. Although the average

bias shows different tendencies depending on the ensemble

size (Fig. 12a), the standard deviation of bias decreases as the

assimilation window length increases for the same ensemble

size, which implies that the longer assimilation window length

reduces the variability of the bias. Except for L3E150, average

RMSE decreases as the assimilation window length becomes

longer and the ensemble size becomes larger (Fig. 12b).

Based on verifications using CO
2
 observations, the config-

uration of a 10-week assimilation window and 300 ensembles

is most suitable combination of data assimilation parameters

for estimating surface CO
2
 flux in the Asian region. The result

for 10-week assimilation window is the best when the

ensemble size is large (e.g., 300). Because observation sites are

sparsely distributed in the Asian region, the longer assimilation

window length is more appropriate when the number of

ensembles is 300. 

(5) Verification with larger ensemble size and longer

assimilation window length

Additional experiments with even larger ensemble size (i.e.,

400 and 500) and longer assimilation window length (i.e., 15

weeks) were implemented to check whether the ensemble size

and assimilation window length tested in this study are appro-

priate to get sufficiently reliable flux estimates for the Asian

region. The experimental period of the additional experiments

was from 1 January, 2006, to 31 December, 2007, and the

Fig. 12. (a) Average (black rectangle) and standard deviation (dotted
bar) of bias [ppm] and (b) RMSE [ppm] between modeled CO

2

concentrations and observed CO
2
 concentrations obtained from the

CONTRAIL project. Observations above 625 hPa were used in
analysis following Niwa et al. (2012). 

Fig. 13. (a) The optimized biosphere fluxes (Pg C yr
−1

) of the ex-
periments with 3, 5, 7, 10, and 15 weeks of assimilation window
length for each Trancom region in Asia (i.e., EB, ET, and TA)
during 2007 and (b) the number of degrees of freedom (DOF) as a
function of ensemble size.
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results of 2007 were analyzed because 2006 was regarded as

spin-up period. 

In case of longer assimilation window length, the carbon

sink in Asia increases as the assimilation window length be-

comes longer (Fig. 13a). However, the increasing slope becomes

more gradual with longer assimilation window length,

especially between 10 and 15 weeks of assimilation window

length (Fig. 13a), which implies that the carbon sink of the

biosphere flux in Asia reaches to a saturation point with 10

weeks of assimilation window length. In addition, increasing

the number of ensembles shows a tendency of convergence

after 300 based on the degrees of freedom (DOF) (Fig. 13b)

which is a measure of how well the estimated covariance

matrix captures the complete covariance structure. The DOF is

calculated as in Eq. (4) following Patil et al. (2001) and Peters

et al. (2005), for a randomly chosen week because the DOF

varies very slightly from week to week:

(4)

where ωi denote the singular values obtained from a singular

value decomposition of the analysis error covariance matrix

and N is the number of ensembles. These results reaffirm that

the 10-week assimilation window length and 300 ensembles

are appropriate to estimate reliable surface CO
2
 flux in the

Asian region.

4. Conclusions

Sensitivity tests using several combinations of assimilation

window length and ensemble size were conducted to identify

the optimum set of data assimilation parameters in the current

CarbonTracker for the Asian region. The assimilation window

lengths used were 3, 5, 7, and 10 weeks, and the ensemble

sizes used were 100, 150, and 300, resulting in a total of 12

experimental combinations. The experimental period was from

January 1, 2006, to December 31, 2009, and 2006 was

regarded as spin-up period and excluded from analysis. The

results were analyzed in EB, ET, and TA in the Transcom

region. The biosphere flux, which is the most important flux

for the optimization of surface CO
2
 flux in Asia, was mainly

analyzed among biosphere, ocean, fire, and fossil fuel fluxes,

which constitute the surface CO
2
 fluxes.

The absorption intensity and difference in intensity of the

optimized biosphere fluxes among the experiments were

largest in EB, followed by ET and TA. In the globe, as the

assimilation window length and ensemble size increase, the

uptake of surface CO
2 
flux increases. However, in Asia, as the

assimilation window length increases, the uptake of optimized

biosphere fluxes increases but the uncertainty of optimized

biosphere fluxes decreases. In contrast, as the ensemble size

increases, the uptake decreases and uncertainty increases. The

optimized biosphere flux is more sensitive to assimilation

window length in EB, whereas it is sensitive to ensemble size

as well as the assimilation window length in ET. Because of

the relatively simple distribution of vegetation and weather

phenomena in EB, the assimilated observation number (asso-

ciated with the assimilation window length) is important for

optimization and uncertainty decreases after optimization due

to the effect of assimilating observations. In contrast, the com-

plex distribution of vegetation and various weather phenomena

in ET causes the optimized biosphere flux to be sensitive to

ensemble size, resulting in increased uncertainties. The dif-

ference between experiments is small in TA due to the small

effect of data assimilation in TA. Overall, the optimized

biosphere fluxes are more affected by ensemble size than

assimilation window length and present more detailed distri-

butions with 300 ensembles. 

The results were verified using the growth rate of CO
2
 at

Mauna Loa, observed CO
2
 concentrations from observation

sites located in Asia, and observed CO
2
 concentrations from

the CONTRAIL project. The bias and RMSE of observed and

simulated CO
2
 concentrations for each observation site revealed

that the configuration of a 10-week assimilation window

length and 300 ensembles is most appropriate for the Asian

region in the CarbonTracker framework. The simulated CO
2

concentrations produce the best results when the number of

ensembles is 300. Further, the result for 10-week assimilation

window is the best when the ensemble size is large (e.g., 300).

Considering the sparse observation sites in the Asian region,

the longer assimilation window length is more appropriate

when the number of ensembles is large enough to represent

uncertainties (i.e., 300). Additional experiments with even

larger ensemble size (i.e., 400 and 500) and longer assimilation

window length (i.e., 15 weeks) reaffirm that the 10-week

assimilation window length and 300 ensembles are appropriate

in optimizing surface CO
2
 flux in the Asian region in Carbon-

Tracker. The configuration of a 10-week assimilation window

length and 300 ensembles is computationally expensive, nearly

four times as expensive as the existing configuration of a 5-

week assimilation window length and 150 ensembles. Assimi-

lating more observations (e.g., satellite observed CO
2
 data) or

applying an advanced covariance localization method or infla-

tion method can help to obtain similar results to those obtained

by the optimum configuration with relatively reasonable com-

putational cost.
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