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Abstract: The three-dimensional layered growth structure of 934 ferromanganese nodule samples
collected from dives in the Pacific Ocean around Minamitorishima Island was assessed using X-ray
computed tomography (X-ray CT) to elucidate their growth history. The thickness of the layered
structure measured in three orthogonal directions showed that the ferromanganese nodules grew
equally in all directions regardless of shape and size. Based on differences in CT numbers, a layered
structure was subdivided into sublayers I, II, III, and IV, which corresponded to petrological features.
The nodules were then classified as Types I, II, III, and IV according to whether they had sublayers
I, I and II, I–III, or I–IV, respectively. Correlations between the total thickness of the layers and the
number of sublayers indicated that both represented the relative age of the nodules. Nodules with
all these types were recovered from most of the sampling sites, and histograms of the total layer
thickness at each dive site showed several peaks. These findings indicated that the initiation of
nodule growth was intermittent, rather than simultaneous. Three distinct thickness peaks were
found at many sites throughout the study area, suggesting that at least three nodule initiation events
covering hundreds of kilometers initiated the growth of ferromanganese nodules.

Keywords: ferromanganese nodule; X-ray computed tomography; Minamitorishima Island

1. Introduction

Spherical ferromanganese nodules composed of iron (Fe) and manganese (Mn) oxides
and hydroxides are widely distributed on the deep seafloor [1–3]. These nodules are also
enriched in critical metals such as nickel (Ni), copper (Cu), cobalt (Co), and rare-earth
elements (REEs), representing a potential resource of the metals that are crucial for high-
tech and green-tech products [2,4]. To date, large nodule fields have been identified in the
Clarion-Clipperton Zone (CCZ), the Peru Basin, the Penrhyn-Samoa basins, and the Central
Indian Ocean Basin [1,3,5–8]. Ferromanganese nodules in the CCZ have attracted economic
interest due to their wide distribution and high concentration of Cu and Ni, and this
nodule field has been extensively investigated over the past several decades [1,3,5,9–11].
A large field of ferromanganese nodules has recently been discovered in the Japanese
Exclusive Economic Zone (EEZ) around Minamitorishima Island in the western North
Pacific Ocean [12,13]. Machida et al. [12] revealed that the nodules are characterized by
high concentrations of Co, Ni, and Cu, and determined that they have potential as a
metal resource.
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Ferromanganese nodules have layered growth structures (oxide layers) formed by
the accumulation of Fe-Mn oxides/hydroxides around a nucleus like the rings of trees.
The nodules from the Minamitorishima EEZ generally consist of concentric layers, L0, L1,
and L2 that are comparable to those of ferromanganese crusts in the western North Pacific,
including the Minamitorishima EEZ [12]. As the layered structures reflect nodule growth
history, a detailed study of the structure is an important key to understanding how they
are formed. However, the three-dimensional structure of ferromanganese nodules has
not been comprehensively investigated because the nodules need to be cut at multiple
locations for observation; thus, observing a large number of nodules is laborious, costly,
and impractical.

The three-dimensional internal structure of geological samples can now be deter-
mined without destroying samples due to recent advances in X-ray computed tomography
(CT) [14–16], and it has also been applied to ferromanganese nodules [17,18]. The three-
dimensional structures of numerous ferromanganese nodules should provide new insights
into the ore genesis of the nodules. Therefore, the present study used X-ray CT to determine
the three-dimensional structure of the oxide layer of 934 ferromanganese nodule samples
collected from the western North Pacific Ocean around Minamitorishima Island.

2. Materials and Methods
2.1. Sample Collection

Nodules were collected by 16 dives using the deep-sea manned submersible Shinkai
6500 within and near the Minamitorishima EEZ during the YK16-01 and YK17-11C cruises
of the R/V Yokosuka during 2016 and 2017, respectively (Figure 1). Ferromanganese
nodules were sampled at two to six points each from 13 of the 16 dive sites (Figure 1)
using a manipulator, scoop, and push cores. Some relatively large samples were collected
by targeted sampling using the manipulator arm of the Shinkai 6500 (Figure 2A). Most
samples were collected Nodules were collected by 16 dives using the deep-sea manned
submersible Shinkai 6500 within and near the Minamitorishima EEZ during the YK16-01
and YK17-11C cruises of the R/V Yokosuka during 2016 and 2017, respectively (Figure 1).
Ferromanganese nodules were sampled at two to six points each from 13 of the 16 dive sites
(Figure 1) using a manipulator, scoop, and push cores. Some relatively large samples were
collected by targeted sampling using the manipulator arm of the Shinkai 6500 (Figure 2A).
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Figure 1. Bathymetric map shows locations of SHINKAI 6500 dive sites during cruises YK16-01 and 
YK17-11C of R/V Yokosuka. Filled stars indicate sites where ferromanganese nodules were col-
lected; blank stars show sites where nodules were not sampled. Dashed white circle represents Jap-
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Figure 1. Bathymetric map shows locations of SHINKAI 6500 dive sites during cruises YK16-01 and
YK17-11C of R/V Yokosuka. Filled stars indicate sites where ferromanganese nodules were collected;
blank stars show sites where nodules were not sampled. Dashed white circle represents Japanese
exclusive economic zone.
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Figure 2. Photographs show ferromanganese nodules sampling using (A) manipulator, (B) scoop,
and (C) push core.

Most samples were using a scoop (Figure 2B) to obtain nodules of various sizes
without bias. However, sampling with a scoop was impossible when adjacent nodules
were connected or when the underside of a nodule adhered to sediment. Several nodule
samples were collected using push cores together with sediment samples (Figure 2C).
Nodules collected using push cores were in the same vertical orientation as they were
when deposited on the seafloor. Table 1 summarizes the latitude, longitude, and water
depth location of each sampled point and describes the sampling tools.
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Table 1. Locations of the sampling points and employed sampling tools during YK16-01 and YK17-11C cruises.

Location

Dive Stop Depth (mbsl) Latitude (N) Longitude (E) Sampling Tools

6K#1459 1 5499 24◦35.70′ 157◦00.98′ M, S
2 5485 24◦35.55′ 157◦00.88′ M
3 5590 24◦33.63′ 156◦59.66′ S
4 5503 24◦34.36′ 157◦00.49′ S
5 5565 24◦33.99′ 156◦59.98′ P

6K#1460 1 5531 23◦05.02′ 154◦26.55′ M
2 5549 23◦04.96′ 154◦25.36′ M

6K#1461 1 5730 21◦59.05′ 153◦56.33′ M, S, P
2 5731 21◦59.00′ 153◦56.02′ S, P

6K#1462 1 5456 22◦19.91′ 155◦44.06′ M, S, P
2 5455 22◦19.03′ 155◦43.17′ -
3 5458 22◦18.89′ 155◦43.13′ M, P
4 5446 22◦18.34′ 155◦42.50′ M, S, P
5 5445 22◦18.18′ 155◦42.27′ S, P

6K#1463 1 5461 21◦57.15′ 156◦06.64′ M, P
2 5459 21◦57.08′ 156◦06.77′ S
3 5289 21◦56.83′ 156◦07.81′ S
4 5190 21◦56.82′ 156◦08.03′ S, P
5 5030 21◦56.77′ 156◦08.27′ S

6K#1464 1 5781 22◦15.43′ 153◦51.38′ M, S, P
2 5785 22◦15.14′ 153◦51.66′ M
3 5785 22◦14.79′ 153◦52.26′ S, P
4 5755 22◦14.77′ 153◦53.17′ S, P
5 5759 22◦14.76′ 153◦53.42′ S, P
6 5763 22◦14.78′ 153◦53.84′ S

6K#1465 1 5729 21◦59.11′ 153◦56.32′ S
2 5725 21◦59.70′ 153◦56.30′ P
3 5696 22◦01.12′ 153◦56.29′ M
4 5685 22◦01.68′ 153◦56.29′ M, S, P

6K#1497 1 5163 22◦07.88′ 155◦32.51′ M, S, P
2 4936 22◦07.57′ 155◦30.62′ S, P
3 4847 22◦07.64′ 155◦30.20′ M, S

6K#1498 1 5639 22◦59.01′ 154◦00.94′ M, S, P
2 5644 22◦57.97′ 154◦00.51′ M, S
3 5657 22◦57.20′ 154◦00.21′ M, S
4 5686 22◦56.74′ 153◦59.84′ S, P

6K#1499 1 5264 22◦36.26′ 153◦02.03′ S, P
2 5085 22◦38.42′ 153◦02.07′ -
3 5001 22◦38.49′ 153◦02.10′ -
4 4966 22◦38.60′ 153◦02.17′ S, P

6K#1500 1 6066 26◦15.06′ 158◦11.03′ S, P
2 6046 26◦15.35′ 158◦11.37′ M
3 6034 26◦15.51′ 158◦11.61′ S, P
4 6013 26◦16.14′ 158◦12.32′ M
5 6015 26◦16.11′ 158◦12.48′ M

6K#1501 1 5866 24◦48.64′ 157◦02.79′ S, P
2 5861 24◦47.30′ 157◦02.69′ M, S, P
3 5871 24◦47.67′ 157◦02.04′ S
4 5838 24◦47.59′ 157◦01.56′ S

6K#1503 1 5860 25◦49.99′ 154◦35.08′ P
2 5849 25◦48.71′ 154◦34.80′ P
3 5866 25◦48.16′ 154◦34.69′ S, P
4 5736 25◦47.28′ 154◦34.55′ P

mbsl: meters below sea level. M = manipulator; S = scoop; P = push corer; - = nodules were not sampled.
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2.2. Analytical Method

The internal structure of Mn-nodule samples was analyzed using LightSpeed Ultra
16 X-ray CT scanner (GE Healthcare, Chicago, IL, USA) for samples from 6 K #1459,
1460, 1461, 1462, 1463, and 1464 (YK16-01) and an Aquilion PRIME/Focus Edition X-
ray CT scanner (Canon Medical Systems Corp., Otawara, Japan) for samples from 6 K
#1465 (YK16-01), 1497, 1498, 1499, 1500, 1501, and 1503 (YK17-11C) at the Center for
Advanced Marine Core Research, Kochi University (Kochi, Japan). The samples were
analyzed by both scanners operating at 120 kV and 100-mA. The signal at each point in the
images (CT number) is expressed as Hounsfield units (HU) and is defined as,

CT number = 1000
µ− µw
µw

[HU]

where µ and µw are the linear X-ray absorption coefficients, respectively, of the sample and
pure water, which was the standard reference. As the degree of X-ray attenuation depends
on the density and atomic number of the samples, the CT number can be regarded as a
function of the porosity and chemical composition of the material in any voxel. Details of
the principles of X-ray CT imaging are provided elsewhere [14,19–24].

After excluding broken or severely damaged ferromanganese nodules, we measured
the thickness of the oxide layer in 934 nodules using the open-source Digital Imaging and
Communication in Medicine (DICOM) software OsiriX [25], that can reliably measure
length on CT images with accuracy <0.3 mm which is a viable alternative to actual measure-
ments [26]. The thickness of the oxide layer was measured along three mutually orthogonal
axes through the nucleus, each of which was measured twice (n = 6 measurements per
sample) (Figure 3). We also measured the long, middle, and short axes using a caliper.
These three axes did not strictly correspond to those along which the thickness of the oxide
layer was measured.
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3. Results and Discussion
3.1. Relationship between Oxide Layer Thickness and Nodule Size

The thickness of the oxide layer and nodule size are summarized in Table S1. Figure 4
shows the thickness of the oxide layer in the X, Y, and Z axes, and the thickness of the
oxide layer in these directions was the average of the measurements at two points on the
sides of each axis (Figure 3). The thickness of the oxide layers along the three axes closely
correlated, and the regression line tended to be consistent with the 1:1 line. These results
indicated that the oxide layer of the nodules at the study site grew uniformly, regardless of
the direction, although some samples deviated from the regression line.
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Figure 5 shows the relationships between the total thickness of the oxide layer and
nodule size. Total oxide layer thickness was determined by averaging the two values
measured along the three axes, although parameters could not be measured in some
damaged samples (Table S1). All graphs show good positive correlations, indicating that
the size of the nodules is mainly controlled by the thickness of the oxide layer. Considering
that the oxide layer grew evenly in all directions, we considered that the shape of the
ferromanganese nodules primarily reflects that of their nuclei, and that the y-intercept
values indicate the average size of the nuclei (~14 × 9 × 4 mm).
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Figure 5. Scatter plots show relationships between averaged oxide layer thickness determined by
X-ray CT and nodule size (long axis (A), middle axis (B), and short axis (C)) measured using caliper.
The least square regression lines (blue solid lines) and the coefficients of determination (R2) are
also shown.

Some samples with large nuclei significantly deviated from the regression lines in plots
of oxide layer thickness vs. long (Figure 5A) and middle (Figure 5B) axes. In contrast, the
thickness of the oxide layer correlated very well with the short axis (Figure 5C). Therefore,
the short axis is the more practical indicator (rather than the longer axis or the average of
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all axes) when comparing the thickness of the oxide layer of ferromanganese nodules on
board a ship.

3.2. Classification of Layers Based on CT Numbers

Based on the three-dimensional distribution of CT numbers, the oxide layer of the
ferromanganese nodules can be subdivided into sublayers, I, II, III, and IV, from the surface
to the nucleus. The sublayers I, II, III, and IV are defined by the dominance of CT numbers
>2600, 2300–2600, 2000–2300, and < 2000 HU, respectively (Figure 6A). The sublayer
boundaries were determined based on the fact that the change in the CT number at the
boundary was larger than the variation within each sublayer (Figure 6A). The porosity of
the nodules was not only controlled by the growth structure of the manganese minerals but
also by other structural disturbances such as cracks and cavities. Therefore, these structural
disturbances result in inconsistent CT numbers (Figure 7F,G,L,P).
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sublayers I–III (I–L), and I–IV (M–P).

Different CT numbers for each sublayer could generally reflect differences in porosity,
because the degree of X-ray attenuation largely depends on the density. Thus, systematic
changes in CT numbers from the inner, to the outer sublayer indicated that nodule porosity
decreases from the inside to the outside. Furthermore, changes in porosity subsequently
corresponded to difference in petrographic features within the oxide layer, reflecting a shift
in the formation environment.

Sublayer IV seemed to be further subdivided into parts with relatively higher and
lower CT values (1800–2000 vs. <1800 HU). However, the two portions were not layered
and intricately interrelated, although the boundary with sublayer III was dominated by the
part with the relatively higher HU (Figures 6 and 7M–P). These findings suggested that
the difference between the parts in sublayer IV with high- and low-HU are attributable
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to structural heterogeneity within this sublayer rather than the layered structure of the
nodules. Indeed, Figure 6B shows that the structure of this sublayer is porous and het-
erogeneous. Sublayer I also seemed to comprise parts with relatively high and low CT
numbers (>3000 vs. 2600–3000 HU). Some samples had inner and outer portions with
lower and higher CT numbers, respectively that apparently constituted a layered structure
(Figure 7B,D–G,I–K). In contrast, the portions with the higher and lower HU were intri-
cately mixed in other samples (Figure 7C,H,L–P), suggesting that the two portions were not
layered, like sublayer IV. Thus, we regarded the two portions as one sublayer (sublayer I),
although the structural and genetic relationships between them are not clear yet.

Machida et al. [12] noted based on petrographic findings of two half-cut samples
that nodules from the Minamitorishima EEZ generally consist of a concentric outermost
mottled layer (L0), a massive black layer (L1), and an innermost porous layer (L2). The
present findings agreed with these results (Figure 6B). The present X-ray CT results showed
that sublayers I and II were comparable to the L0 and L1 layers, respectively (Figure 6B),
and that sublayers III and IV were comparable to the L2 layer (Figure 6B). Consequently,
the layered structure identified by X-ray CT closely corresponded to that defined based
on petrographic features, reflecting that changes in CT numbers are generally attributable
to those in visible petrographic textures. The L2 identified by Machida et al. [12] was
further subdivided into sublayers III and IV by the present X-ray CT findings (Figure 6B),
indicating that X-ray CT can identify changes in rock texture that petrological analyses
cannot clearly identify. Therefore, we concluded that X-ray CT is an efficient, effective, and
non-destructive way to reveal more petrological details about numerous ferromanganese
nodule samples.

Machida et al. [27] further classified three layers that they previously defined [12] into
nine sublayers using µ-XRF multi element mapping. They showed that the L0, L1, and L2
layers can be subdivided into two (L0 inner, L0 outer), three (L1 inner, L1 middle, L1 outer),
and four (L2 inner, L2 middle, L2 outer, L2 outermost) sublayers, respectively, based on the
distribution of Fe, Mn, Ti, Si, P, and Cu. X-ray CT did not discern further sublayers in the
L0 and L1 layers. Although X-ray CT recognized that the L2 layer comprised two sublayers,
the four sublayers identified by Machida et al. [27] were not clearly visualized. Whereas
X-ray CT identified density changes that reflect changes in rock structures, µ-XRF chemical
mapping detects changes in the composition of multiple elements. This could result in the
recognition of changes in the depositional environment that are not apparent in changes in
rock structure, leading to the identification of more layers compared with petrological and
X-ray CT analyses. Consequently, the µ-XRF mapping proposed by Machida et al. [27] can
analyze the oxide layer in more detail, but it still requires cutting nodule samples in half.

3.3. Implications for the History and Trigger of Nodule Growth

The ferromanganese nodules were subdivided into types I, II, III, and IV depending
on whether they had only sublayer I, sublayers I and II, I –III, or I–IV) (Figure 7). None of
the samples had more missing outer layers than the innermost sublayer. This suggests that
none of the nodules had ever been affected by any event during their lifetime that resulted
in the complete loss of one or more sublayers. Therefore, we considered that the difference
in the number of sublayers represents the time when a nodule began to grow. Moreover,
samples with more sublayers tended to have a thicker oxide layer (Figure 8). Therefore, the
total thickness of the oxide layer and the number of sublayers might indicate the relative
age of the nodule.
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Figure 8. Histograms of oxide layer thickness in nodule samples: (A) Type-I, (B) Type-II, (C) Type-III,
and (D) Type-IV nodules.

Figure 9 shows the abundance ratios of Type I, II, III, and IV nodules at each dive
site. Except for 6 K #1460 and 1503, where only a few samples were collected (Table 1), at
least two types of nodule samples were collected from all the other dive sites. All types of
nodules were sampled at eight of 11 sites (Figure 9). This means that the nodules in the
study area started to grow at any time; that is, they did not start growing simultaneously.
However, histograms of the distribution of oxide layer thickness in the nodules showed
distinct peaks at each site (Figure 10). This suggested that the onset of nodule growth was
not continuous, but rather an event triggered the growth of more nodules. In addition,
multiple peaks in the thickness distribution in nodules from many sites were identified
(Figure 10), indicating that nodule growth was initiated often, even within a single site.
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Figure 10. Histograms and corresponding Kernel density estimates (KDE) show distribution of oxide layer thickness in
nodule samples collected from all dive sites. Dashed vertical lines, positions of peaks that are common to all sites.



Minerals 2021, 11, 1100 14 of 16

An overview of the histograms of total layer thickness for all sites shows three promi-
nent peaks (5, 15, and 25 mm) that were common to several sites (Figure 10). Peaks at
5, 15, and 25 mm were recognized at eight (6K#1461, 1463, 1465, 1497, 1498, 1499, and
1501), four (6K#1459, 1462, 1464, and 1500), and four sites (6K#1459, 1463, 1465, 1500),
respectively (Figure 10). These peaks were evident between sites that were more than
100 km apart (for example, the 15-mm peak at 6 K #1462, 1464, and 1500; Figure 1). These
three common peaks suggested that at least three extensive events covering hundreds of
kilometers triggered the formation of ferromanganese nodules in the study area.

However, a closer look revealed that the ratio of each type of nodule occurrence
considerably varied among dive sites (Figure 9). For example, Type I nodules are dominant
at 6 K #1461, 1463, 1465, 1498, and 1501, whereas Type II nodules were most common at
6 K #1497 and 1499. In addition, Types III and IV nodules were most common at 6 K #1464
and 1459, respectively. Moreover, reflecting the difference in the dominant nodule type,
the distribution of oxide layer thickness also differed among dive sites, even though the
peaks were at the same positions (Figure 10). Such differences can be recognized even
for nearby sites within tens of kilometers (6 K #1459 and 1501, 6 K #1461 and 1464, 6 K
#1462 and 1497) (Figure 1). This suggested that heterogeneous local events led to nodule
growth initiation. We therefore considered that local phenomena on the order of tens of
kilometers affected the occurrence and distribution of ferromanganese nodules in addition
to the broader events described above.

4. Conclusions

X-ray CT analysis of the structures of the oxide layer of 934 ferromanganese nodule
samples collected from the western North Pacific Ocean around Minamitorishima Island
provided the following results:

1. The oxide layer of the nodules essentially grew isotropically, regardless of direction.
This indicated that nodule shape depended primarily on the shape of the nucleus.

2. The oxide layer of the nodules can be subdivided from outside to inside based on
CT numbers into sublayers I and II, III, and IV. These were comparable to the layers
identified by Machida et al. [12] based on physiological findings as follows: sublayer
I corresponded to L0, sublayer II to L1, and III and IV to L2.

3. We identified Types I–IV nodule samples with only sublayer I, or and with sublayers
I and II, I–III, and I–IV, respectively. The number of sublayers correlated with the
total thickness of the oxide layer, indicating that both can represent the relative age
of nodules.

4. Almost all types of nodules were found at the investigated sites. This indicated that
the nodules in the study area did not start growing simultaneously, but comprised a
mixture that started growing at different times.

5. Histograms of oxide layer thickness revealed three peaks that were prevalent through-
out the study area, indicating that at least three widespread events covering several
hundred kilometers triggered ferromanganese nodule generation in this region.

6. The dominant types of nodules noticeably differed among dive sites that were only a
few dozen kilometers apart. This suggests that local factors on a scale up to tens of
kilometers also affects the onset of nodule growth and distribution.

Future research is expected to provide further insights into the genesis and formation
history of ferromanganese nodules in the Minamitorishima EEZ by adding data on the
detailed chemical composition and formation age of each sublayer to the CT results.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/min11101100/s1, Table S1: Innermost sublayer, weight, size, and oxide layer thickness of
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